All Numbers Are Equal 4 T; H0 \$ @: `- R" K) f( m
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ( ]6 ]2 v: L$ \9 W' c0 ~( `# w) {+ J* F. O! e# C- o9 V
a + b = t * y' X0 @, G" |(a + b)(a - b) = t(a - b) 5 H% g6 @* {9 X2 [( Ma^2 - b^2 = ta - tb$ i. G8 u& r. u0 }
a^2 - ta = b^2 - tb , H7 u2 E' m% Na^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 ( o; O' `. N" h7 `1 R; Z(a - t/2)^2 = (b - t/2)^2 3 ~ q6 L% N$ { ~) ma - t/2 = b - t/2 1 ~7 D7 {. q0 O4 c2 B" na = b $ I* `0 O: z( L& D9 L# p; b6 C% \3 Y4 H( a1 r
So all numbers are the same, and math is pointless.