 鲜花( 19)  鸡蛋( 0)
|
this answer is the good one.
6 f; B1 j* z7 x) E4 p. f% O- u% m$ B) z8 }0 e+ l/ q
2 {% @# T+ t* ]* `
procedure:
; n/ H. m% W- V% R
: ]7 I) @2 @- w& `4 K% A2 OFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s( x! F- }, l7 {. d( L* S
so:/ L1 y$ ` } `) ~, e
' o: [! F' k0 o& b# k
bC(x) + (a+bx) dC(x)/dx = -kC(x) +s
. D, o- x5 }9 Z3 ei.e.
& q8 }3 C5 n2 K) w
" K8 r( v' x; V% U9 D(a+bx) dC(x)/dx = -(k+b)C(x) +s8 [2 u- _. B& \
5 _! ]5 [5 L* L p
" x/ ~) j9 Y, o1 R% W ^6 N6 {introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
$ U5 f) ]8 r& }' ~8 Zwhich means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx5 f# Q4 t* D0 |
therefore:
" ^0 I3 A7 n" m' y% X/ k- v1 U6 P7 W7 \( E- Z8 R+ M
{(a+bx)/K} dY(x)/dx=Y(x)
& Q$ x9 \0 X, d& |" C1 m
6 t( R$ E+ T, N) Q8 V) `from here, we can get:7 @( Q% r) M3 m" c
; ^7 M3 r: h0 d# f m
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = {K/b(a+bx)}d(a+bx)& U7 r& I+ n% U$ L# U7 B4 f
" o1 P0 j% C L: S4 G
so that: ln Y(x) =( K/b) ln(a+bx)# r3 r9 {3 a- A. ?* z8 w `. [: D
, W" k; v, S: _6 h% {
this means: Y(x) = (a+bx)^(K/b), d) n' `9 `$ T$ B, Q
by using early transform, we can have:9 n# p! W$ O9 K( R5 P% {9 M
7 l- ]4 ^; a9 D& w2 u9 r0 k7 T: Z-(k+b)C(x)+s = (a+bx)^(k/b+1)
( [) s& m: U2 m; Z6 u% Z$ H, P! p" m: k
finally:
& _" R7 J8 K2 ?, e
% p: v- v, p& J& A7 c. ?+ cC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|