All Numbers Are Equal ' R( L! E2 M( v9 `Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 0 P2 h9 l" j" J, Z; E" c* C5 j1 m7 Q ! P7 p! m1 r4 k, Ha + b = t 9 G' N) K) u/ n(a + b)(a - b) = t(a - b)3 o$ o; ]. H6 R; \1 t0 r5 Z
a^2 - b^2 = ta - tb ' h! }/ M' n# K: j8 F: ea^2 - ta = b^2 - tb 4 N9 {8 N7 n# |. [6 @. L3 I2 v ga^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4) ^9 I( V) k' K
(a - t/2)^2 = (b - t/2)^2# h7 d7 }" [2 o& D
a - t/2 = b - t/2 D+ l) {0 X+ y5 }- @8 Y* s8 ^+ Da = b ) U0 W: N3 {: C: {& C
4 H+ |) X0 V4 I; `
So all numbers are the same, and math is pointless.