 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 9 f8 S) p: C* m
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then - c1 t* }* {# e5 x8 \
8 b) y+ S3 r$ u. Z+ k
a + b = t
" B9 W+ b" W* a! C: p$ s8 K$ Z(a + b)(a - b) = t(a - b)
' z8 _0 u( f/ H- b5 qa^2 - b^2 = ta - tb+ h- k. A6 N% ~, n, i3 O3 {
a^2 - ta = b^2 - tb
. Z. k5 E% d* M6 @a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4, @) m7 R) @& k' s) h
(a - t/2)^2 = (b - t/2)^2. G* I5 V+ T- Y9 z6 ]2 O
a - t/2 = b - t/2/ W N* h+ G$ _ g* T
a = b + l* G; O S% s- C2 B) `* G/ M; P, n6 H
8 \+ q l2 g- L# |' kSo all numbers are the same, and math is pointless. |
|