All Numbers Are Equal + C; R7 T* c2 } n; J* H; D
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then # ]" J2 s% E0 v Z" p
; n. m+ I* A2 S+ k* c4 r2 Q2 s4 \& ~a + b = t 7 H+ M( z. D+ t, L9 U1 h$ h5 B! b(a + b)(a - b) = t(a - b) }# X9 C2 U# z# i; d0 a' p/ `4 S
a^2 - b^2 = ta - tb& i7 v' I0 V4 U
a^2 - ta = b^2 - tb$ c- L$ o. i; X _
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4" Q; n: R( i: C9 z' R
(a - t/2)^2 = (b - t/2)^23 C! d& v+ z( T( d
a - t/2 = b - t/20 `& d; a6 e8 Z9 p0 w
a = b 1 m2 `. c3 T+ E8 R 0 k$ V/ G! z) d, ~8 x- i4 R$ b2 D1 nSo all numbers are the same, and math is pointless.