All Numbers Are Equal - V i- T$ v2 @$ e9 _
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 1 p p* _" ?0 o: R$ X% V, c9 s- y! V7 `0 Y& z( o
a + b = t5 R' \% q9 Z+ V1 \" w7 G9 n+ I
(a + b)(a - b) = t(a - b)9 _# z n- n! b2 Z: Y
a^2 - b^2 = ta - tb+ L9 n5 J3 n( C+ `$ v% Z
a^2 - ta = b^2 - tb 5 Y9 r' o- M" V/ ^) Wa^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4; a) n* j3 d' ~6 t
(a - t/2)^2 = (b - t/2)^26 f' x& {+ O# W b. U
a - t/2 = b - t/22 S3 d1 G. B- W6 n0 n7 z9 l' i% G4 F
a = b $ k- S# {3 M6 r( o( K
! |% }- R+ b6 Y2 L/ ?So all numbers are the same, and math is pointless.