 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal & n, }: S1 H! W# o0 F/ T$ P
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then & F8 |, d; k$ H w
7 A4 D5 [, Z- X) d5 S) F
a + b = t
( s* R2 p6 z; [/ a: u& Y(a + b)(a - b) = t(a - b)+ j' ]/ Q$ e2 [2 w6 }
a^2 - b^2 = ta - tb& M: q# p/ b1 ^7 }
a^2 - ta = b^2 - tb( B" j) M! L, K
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
0 |* ]: J) b8 i( T( L. ^(a - t/2)^2 = (b - t/2)^2# f) `; U7 R, \9 W3 J& Y# f' e% b0 M
a - t/2 = b - t/2
5 M( o% l* t) n. ]5 n4 u5 e8 w' ^2 }4 ma = b 2 ?: {/ N% Q& q7 ]9 s. s
( \7 w# B+ i0 L* V8 X* P# n3 \
So all numbers are the same, and math is pointless. |
|