All Numbers Are Equal 4 r @% x; q9 N1 E1 OTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then # z/ m- X; O! l0 H+ ?! U; y) c 9 o% B4 O- r" E: L- Z8 Ja + b = t ; _7 i; D- |- r4 ^5 \- q* ?2 b(a + b)(a - b) = t(a - b)8 p. u0 Q+ C# o
a^2 - b^2 = ta - tb 2 C1 O2 G, e( w' b' B) s9 F, a5 U* a3 la^2 - ta = b^2 - tb. K7 j; [" [4 r( m3 q
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 ; d N& y4 a7 k; g% w1 r4 C(a - t/2)^2 = (b - t/2)^2 ! t: I( L* Q% c1 ~5 b4 ya - t/2 = b - t/2 2 r8 G, b4 U6 ~; D% ga = b - `" f0 j" `9 {' g
7 z* `8 Y2 r% r3 d$ [
So all numbers are the same, and math is pointless.