 鲜花( 19)  鸡蛋( 0)
|
this answer is the good one.$ @$ g4 Q, r+ S9 t! c, h1 L4 ~
/ K! O1 C5 B: A
& b6 w3 S1 {$ o" l: t+ D- Tprocedure:2 ]9 m, ~* d. c# K [" I; }
$ R/ c' j! O0 u2 m- CFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s7 i2 l8 n' X2 w+ \. w
so:
! x1 l7 H! n6 R" R' ]5 P
0 x5 e: l( Z4 w3 e O0 C1 l+ JbC(x) + (a+bx) dC(x)/dx = -kC(x) +s
8 |7 k/ _3 P. e( W3 z; Ti.e.$ z8 N$ d& ^" d2 d2 V0 j
" P8 d& O6 y/ |(a+bx) dC(x)/dx = -(k+b)C(x) +s
/ j6 f6 \' Q7 _% ~8 m4 N
6 j, q/ _" J O n) ~4 b7 J2 Z. c% X1 v$ E6 e1 a# G
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
& U3 f, C! p% t" g( O3 X) P swhich means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx- O4 I0 {. j2 r6 f' u
therefore:( v5 G' H' m7 Q5 v$ a5 a) o5 @5 t$ V
4 j1 Y9 {2 _5 D/ E9 N: o{(a+bx)/K} dY(x)/dx=Y(x)- L0 O5 @: U0 C9 w X
. M7 C* I' F# O( Z' ]from here, we can get:, K, T8 H$ D' P1 k! b# N
) C; b' | k# gdY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = {K/b(a+bx)}d(a+bx), A0 F% V1 o# P/ H9 ]$ x
8 j/ ~) x! _: v% r& }7 Q* W
so that: ln Y(x) =( K/b) ln(a+bx)4 F' Z* O0 s$ ~, I) n- e ]
& c* R6 R( b1 Mthis means: Y(x) = (a+bx)^(K/b)
8 K! p' ?, F' Gby using early transform, we can have:
% n( }; P/ S4 X/ C% U7 l. z
0 E9 Y8 p/ c# j8 v7 b. \: |6 R-(k+b)C(x)+s = (a+bx)^(k/b+1) k U7 n7 Y. B4 n- s
. I0 J6 Z' O$ k1 g& Hfinally:
- |% b1 D3 k5 g# ?; @0 l
/ w: y) b" Q t5 C# q5 k' AC(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|