 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal
# d* G4 M+ l4 q+ D! Y: q7 |Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
: }" F( l* h5 X% r4 P- d6 I1 v7 c5 R; x Z' M7 C( L
a + b = t( B$ r5 e! u, T9 K: T. h; ^
(a + b)(a - b) = t(a - b)
+ e* M4 ` M* u7 g5 Ra^2 - b^2 = ta - tb \' P* u( n/ q N, @1 V
a^2 - ta = b^2 - tb0 \. Q9 t/ G1 s2 ^5 L, b
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4/ l$ J8 j# d6 q2 R8 Z% X
(a - t/2)^2 = (b - t/2)^2% C; U; U& M5 e, D J
a - t/2 = b - t/2
# | E$ v) R. {a = b
, v5 W) v/ i" Z" K# G, ?6 B+ z" g, d9 g4 S9 r- `9 u
So all numbers are the same, and math is pointless. |
|