All Numbers Are Equal / T% O, Q) s! G5 fTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then $ n1 T$ S2 f! j/ j0 `" O9 @. g4 u
+ _9 u/ h6 y) B9 Z/ o# q9 `$ Ra + b = t( N* Z/ \, h+ q% r% b1 z
(a + b)(a - b) = t(a - b) ; B3 x& ?8 N; U9 i1 b' U& ca^2 - b^2 = ta - tb/ u+ _: s9 f2 I8 \9 }+ X
a^2 - ta = b^2 - tb 3 a {7 `* X* I/ na^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 . V. o8 H' B8 u1 g' H( h" ~- A(a - t/2)^2 = (b - t/2)^2 8 g7 h' h" S2 }& S+ n; ma - t/2 = b - t/2 2 a. e: }3 u! X2 @a = b ) o; G) t5 @( Q; Q
1 G8 h: K5 R$ L3 S$ f3 q
So all numbers are the same, and math is pointless.