 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal / S7 n" e0 V5 V6 f) n1 M, k& X3 ?
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 4 F& z. ~2 B1 h: ^; f5 G
3 _3 r" x/ B O( pa + b = t" ]$ _2 L D! L5 Y
(a + b)(a - b) = t(a - b)6 s- ^# y4 o7 B8 e0 c' D, d
a^2 - b^2 = ta - tb
* V' m7 @ O; o0 e; _: G8 P8 Ia^2 - ta = b^2 - tb2 T2 r# { n8 E( r- E( Y
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
8 A, G8 x/ F9 ^% m' Q(a - t/2)^2 = (b - t/2)^2' L# T# ? d. x. \4 t5 J
a - t/2 = b - t/25 f1 y( S% d, ~; n/ S; U" K
a = b
8 _+ D+ Z. ]* I, N# ^
8 J! l$ c+ J4 a5 ^5 `So all numbers are the same, and math is pointless. |
|