 鲜花( 19)  鸡蛋( 0)
|
Solution:
0 r6 h' X& @; A, \
3 A# x, _* n) g5 D5 xFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s
5 Q" m( H/ z. v9 w3 ?# b2 g8 T5 zso:- \0 c6 j, p3 u' h m6 {
( s. y' P2 Z; @; i( h* V1 v' lbC(x) + (a+bx) dC(x)/dx = -kC(x) +s0 b! Y* }8 O2 l
i.e.# u' m& C2 }; k: b B/ k' `( v
7 e1 M' h; Q/ j
(a+bx) dC(x)/dx = -(k+b)C(x) +s
( j7 {( {% e1 d9 a* s6 Y* {9 j) I& \2 F# I7 P6 X5 ^% [% ^* b
- [1 z8 b7 D. H2 |/ [8 S( k
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b) + v+ | k0 L8 N" I1 k
which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx0 g X( P: y# Y$ p% G
therefore:) t+ l# L- s. W- n0 Y
6 H! d( C& d/ b
{(a+bx)/K} dY(x)/dx=Y(x)
2 F0 ^* a0 @2 I K2 b5 I! g: r7 E8 Z: D
from here, we can get:
- s- u4 Q6 |8 S, [: a. ]- t; R' z% c0 c, M, |
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)
/ Q: G$ A* y3 g- W
2 ~5 ^0 w6 m P0 rso that: ln Y(x) =( K/b) ln(a+bx)
3 ]. Z( B9 C& Q1 U Z6 n
M# m; q+ o1 F. S' b: \% [this means: Y(x) = (a+bx)^(K/b)' t: b, Y/ x4 f9 g Z8 N' e0 a
by using early transform, we can have:
8 _- `% x' b5 N6 P5 h: x8 {6 k% c& v
-(k+b)C(x)+s = (a+bx)^(k/b+1)
& U2 C7 F/ C2 {9 P" u2 l( z( N# n0 f4 h5 J6 L1 g: s6 G
finally:) w9 ?( |# o& P- x. o7 G4 s! _
$ k; T, d9 |% V# r' R& d' g+ b4 e
C(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|